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We investigate the decay of initial correlations in a spin system where each 
spin relaxes independently by an intramolecular mechanism. The equation 
of motion for the spin density matrix is assumed to be the Redfield equation, 
which is of the form of a quantum mechanical master equation. Our analysis 
of this problem is based on the techniques of Shuler, Oppenheim, and co- 
workers, who have studied the decay of correlations in systems which can be 
described by classical stochastic master equations. We find that the off- 
diagonal elements of the reduced spin density matrices approach their 
equilibrium values faster than the diagonal elements. The Ursell functions, 
which are a measure of the correlations in the system, decay to their zero 
equilibrium values faster than the spin density matrix except for the furthest 
off-diagonal elements. Far off-diagonal matrix elements of the spin density 
matrix approach equilibrium at the same rate as the Ursell functions, which 
is the important difference between the quantum mechanical model studied 
here and the classical models studied earlier. 

KEY WORDS: Spin correlations; dynamics of correlations; Redfield equa- 
tion; quantum mechanical master equation. 

1. I N T R O D U C T I O N  

The problem of the decay of  initial correlations in t ranspor t  theory has re- 

ceived relatively little at tention.  An  impor tan t  exception is the work of Shuler, 

Oppenheim, and  co-workers, a-3) who have considered the relaxation of  
initial correlations in a n u m b e r  of model  systems which can be treated ana- 
lytically in complete detail. Our  purpose here is to apply the techniques of  

these workers to spin relaxation. We investigate the decay of initial  correla- 
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tions in an N-spin system under conditions where the spins relax indepen- 
dently, by intramolecular coupling to a heat bath. The equation of motion we 
adopt for the N-spin density matrix is the Redfield equation, ~41 which is 
known to give an excellent description of spin relaxation in fluid systems. 

The model we study is of interest because it describes the relaxation of a 
quantum mechanical system in weak interaction with a bath. In contrast, the 
models previously studied a-~l deal with classical systems which can be 
characterized in terms of probabilities. The problem of spin relaxation is one 
of  many examples where one encounters a so-called quantum mechanical 
master equation. This equation describes the time evolution of the elements 
of the density matrix by coupled first-order differential equations with con- 
stant, perhaps complex, coefficients. Although we shall use the language of 
spin relaxation, our results are applicable to a wide class of relaxation pro- 
blems. Comparison of the results obtained here with the earlier work m 
indicates the difference to be expected in the decay of correlations in classical 
and quantum systems. 

2. T H E  REDFIELD E Q U A T I O N  FOR N O N I N T E R A C T I N G  SPINS 

The system we consider consists of N spins weakly coupled to a large heat 
bath. The Hamiltonian for the system can be written 

H = H ,  + H L + H '  ~- Ho + H '  (1) 

where H~ is the Hamiltonian for the spin subsystem, HL is the bath Hamilto- 
nian, and H '  is the interaction between the spins and the bath responsible for 
the relaxation. 

The spin density matrix is assumed to satisfy the Redfield equation: 

(? /? t ) (a  [ e(t)[ cJ} = --ico~,@ ] ~(t)[ ~'} -k ~ R~'B~,(fl [ ~(t)]/3'} (2) 
Be" 

In Eq. (2), ~ is the spin density matrix of the N-spin subsystem; I ~}, ] fi}, etc. 
are spin states; oJ~, = (E~ - -  E~,)/h, where E~ is the energy of the spin state 
i ~}; and R~,~e, is a tetradic usually referred to as the "relaxation matrix." 
Here and in the following, we compress the notation by denoting 
c~ = (~1 ..... aN) and B = (J~l ,-.., fiN), where ~i or/3~ designate the substates 
of the ith spin. 

The Redfield equation can be simplified by transforming to the inter- 
action representation. The spin density matrix in the interaction representa- 
tion ~* is defined by 

G*(t) = e(~/~)H~ e -ti/~H~ (3) 
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The Redfield equation for a*(t) is 

(~/~t)(~ [ a*(t)l ~ ' )  = ~ {exp[i(~o~, --  coB~,)t]} R~,~s,(fi I a*(t)[ fi') (4) 

In almost all cases of  physical interest, the elements of  R vanish unless there 
is energy conservation. We may quite generally assume that 

R~,~,  = 0 if coe~, =/- c%~, (5) 

so that the sum in Eq. (4) is effectively restricted to those states for which 
m~, = o)~,.  With this assumption, Eq. (4) may be expressed in operator 
form as 

~a*(t)/~t = R"  a*(t) (6) 

The restriction to energy-conserving transitions, expressed in Eq. (5), may be 
relaxed, but for simplicity, we shall not consider this case here. 

In matrix form, the operator equation (6) resembles a master equation 
generalized to matrices, but the tetradic R is not a transition matrix. The 
terms of type R~B~ can be interpreted as transition rates, but the terms of  
type R~,B~,, w h e r e ,  v~ c~' or/3 =/=/3', cannot be so interpreted and need not 
be real. 

The relaxation matrix has the following important  properties: 

R~B~' = 0 (7) 
c~ 

R "G~q = 0 (8) 

where cr eq is the equilibrium spin density matrix: 

Also note that 

<~ i aeq '  ~ ' )  = , ~ ,  = 3 ,  e-~=~n~r/~ e -'~162 
- - B  

Tr (N) a*(t) 1 

Reduced spin density matrices can be defined by 

(9) 

(lO) 

( ~ 1  " ' "  ~ n  { * i ~ . , a( , , ) ( t ) i  % "' c~. ) 

C~n+l a N  

(11) 

or in operator form, 

* = Tr (y-~) ~r(~)(t) a *(t) (12) 
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where a~)(t) is the reduced n-spin spin density matrix (in the interaction re- 
presentation). 

The following properties follow directly from the definition of the 
reduced spin density matrices (11) and (10): 

Z 2 ~ j , ~ l  ... an L ~ ) ( t ) i  < ' ~ ' ~  
c~j c~.i 

= ( ~  ' "  ~ J - ~ J + l  ""  ~ / ~ ? _ l ) ( t ) l  ~ '  "'" ~ ; . _ ~ + ~  "'" ~ ' )  

for j = 1 ..... n (13) 

Tr(~) * ~(,)(t) = 1 (14) 

A reduced spin density matrix which is not a product of one-particle 
matrices is said to be correlated. The reduced spin density matrix is uncorre- 
lated if it can be written as the product of one-particle density matrices. The 
degree of correlation is conveniently studied by means of the Ursell (or 
correlation) functions, which are defined in analogy to those of Ref. 1 as 

u~)(t) = [~n)(t)lo (15) 

where [.-.]~ denotes the "connected average." Ursell functions (here really 
Ursell operators) have the following properties(~): 

(1) u~)(t) = 0 if any subset containing m of the n-spins is uncorrelated 
with the remaining n-m spins, 

l~I cr eq (16) (2) u(~)eq = 0, n ) 2 ,  since ~(n)eq = 
i = 1  

(3) ~ ,  3~j~/(~1... % ] u~)(t)] ~z' '-. ~ ' )  = 0, n ) 2, j = 1, 2,..., n 
c~jctj 

(17) 

Since u[~)(t) is non-zero only if correlations exist between all n spins, the 
Ursell functions are a measure of the correlations in the spin system. 

We now make the further assumption that the spins do not interact with 
each other, but only with the bath. Then, the relaxation tetradic R is a sum 
of single-spin terms 

N N 

R~'Be' = ~ ( R ~ ) ~ , ~ ,  1-[ 3~#j~/B/ (18) 
i = 1  j = l  

j r  

where c~ = (a~ ..... aN), etc., and R~ is the relaxation tetradic for the ith spin. 
The single-spin relaxation tetradic has properties analogous to Eqs. (5), (7), 
and (8). 
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With this assumption, the reduced spin density matrices satisfy reduced 
Redfield equations 

• H 8~,~,8~/~/<fi(~) I c~(*)(t)l fi{,~)) (19) 
j , a i  

Here, as before, we compress the notation by denoting ~(n) = (% ..... a,~), 
/3(.) = (/31 .... , ,8.), etc. 

The Ursell functions satisfy the same equation(I): 

(8/St)<cq~> l ug>(t)l d(n)) = Z ~ (Ri)~,~/~B,' 
B (n)8{n) i=1  

* I 

j = l  
(20) 

The two equations may be written in operator form as 

(8/at)~[~)(t) = R(~> : c~>(t) 

>k 
(8 /a t )u~ ) ( t )  = R(~) : u(~)(t) 

(21) 

(22) 

where 

i~1 J = l  

(23) 

3. E I G E N V A L U E  A N A L Y S I S  OF T H E  R E L A X A T I O N  
OF o~.)(t) A N D  u~.)(t) 

We may solve Eqs. (21) and (22) formally to obtain 

~n)( t )  = eR("r a~,~)(0) = f i  ere : a~,0(0 ) 
i=1  

u~n)(t) = eR('*'t : u~,)(0) = f i e  n~* " u~)(0) 
i = l  

(24) 

(25) 
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Note that since the propagator e R(-)~ factors, it is only necessary to consider 
the single-particle equation 

a~*(t)  = eg~az*(O) (26) 

in order to solve the general equations (24) and (25). Furthermore, if the 
initial spin density matrix were uncorrelated, the complete spin relaxation 
would be described by single-particle equations of the form of Eq. (26). 

The relaxation of the single spin density matrix is conveniently described 
in terms of the eigenmatrices of the tetradic R1. Let {A j} and {Bj} be, respec- 
tively, the sets of right and left eigenmatrices of R~ with eigenvalues {As}; then 

2 R~ll~I'~I~I '</~1 ] Aj [/3~'5 = A~<~ i Aj I ~ '5  
Bit31' 

(27) 

O~ICg I 

(28) 

or in operator form 

R 1 : Nj =/~jAj (27a) 

Bj �9 R 1 = A~-B~ (28a) 

For energy conserving transitions it can be shown that the property of 
"detailed balance," 

R ~ , ~ ,  = e -~~  , 

is satisfied, from which it follows that the •j are real and nonpositive. Further, 
the eigenmatrices can be made "orthonormal" in the following sense: 

Bj :A,~ = ~ ,  (~1/B~', ~ ' ) (~1 I Ak I c~z') = 35k (29) 
C~IC~ 1 

It follows from Eqs. (7) and (8) that 

Ao = a~ q (30) 

B0 = I (identity) (31) 

where we have arbitrarily designated the right- and left-hand eigenmatrices 
corresponding to zero eigenvalue as A 0 and B 0 , respectively. If  it is assumed 
that there is only one equilbrium density matrix, then the eigenvalues can be 
arranged so that 

2% = 0 > A1 ~> )~2 ~> "'" >~ ~8(~+1) (32) 

where s is the spin of the particle. 



Decay of Correlations in Spin Systems 151 

The sets o f  eigenmatrices are complete,  so if  we use Eq. (29), a~*(t) can 
be expanded as 

~ = E [Bj : g l*( t ) ]  A~ (33) 

F r o m  Eqs. (26) and (28), it follows that  

~l*(t)  = ~ [Bj : e ~r : ch*(0)] Aj = ~ eaJt[B5 : ch*(0)] Aj 
J j 

(34) 

I f  we express Eqs. (26) and (34) in terms of  matr ix  elements and compare  
them, we find that  the p ropaga to r  e R~ has matr ix  elements: 

(eRZt,L J ~ ' a B ~ '  = ~ (~l  [Aj [ ~1'5(/3t ] B , / i l l ' }  e aj~ 
J 

(35) 

The term with A = 0 may  be separated out, so that  

(eRit)c~lC~l,/~l~ 1, m ~/31~l,o-elQc~i, ~- E <(~1 I Aj [ OLlt><fll 
j>0 

B~lfix '5 e aj~ (36) 

where we have used Eqs. (30) and (31). Since creq is diagonal,  Eq. (36) takes 
the fo rm 

with 

Rzfx 
e ) .... ,~i/~ I, x ~C~lO~l,$~l~l,~elql @ r ) (37) 

r  = ~ (cq [Aj ] cq'}(fll ]Bj [fl~'} e ~jt (38) 
j>o 

The function r asymptot ical ly  behaves as 

q ~ % ~ , ( t )  ~-~ e ~ ... .  t_+ 0 as t --+ co (39) 

Here, ,)tmax is the largest nonzero eigenvalue for  which 

(~1 IAj/~1')(/31 [ Bj {/31'> =/= 0 

The part icular  eigenvalue may  depend on c~1, cq',/3 a , ill'- 
I f  all the spins are identical, we can substitute Eq. (37) in Eq. (24) and 

obtain (in terms o f  matr ix  elements) 

< ~  " ~ .  I ~ L ( t ) l  ~1' "" ~ . '>  

~...B. i=1 (40) 
Bl'...~n" 
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W e  now expand  the p roduc t  and  use Equat ions  (13) and (14) to ob ta in  

' t f l  eq <c~ 1 ' "  ~ [ ~ ) ( t ) [  c~ 1' ' "  c% ) - -  . ~  3 ~  , a ~ i  
i= l  

= ]=IL fli=, ~e~'ic~i'(~c~i B~'- ~etJe~J'fiJBj'(t){[~' '(7f::]<(O)[ flit> 
i@j 

j= l  /c=l i=1 
5~k  i e l i  v~/~ 

X 2 d?~j~/Bj~/(t)q~,o%~'(t)(fl~fl~ i a~)(0)]/3/tiff> 
t3fi/ 
BkBlc' 

@ "'" @ E f l  ~ ' r  "'" fin [ G~)(O)I i l l '  "'" fin'> 
BI'" "B~Z i= l  

~,'"'~# (41) 

This is the exact  solut ion for  c(*,)(t), bu t  we are interested in the a sympto-  
tic behavior .  Since the (~(t) go to zero asymptot ica l ly ,  the asympto t ic  be- 
hav io r  of  a~n)(t ) is governed by  the first nonzero  te rm on the r igh t -hand  side 
o f  Eq. (41). No te  tha t  the first term contains  a p roduc t  o f  n - -  1 Kronecke r  
deltas and  will be zero i f  more  than  one cq ~ a~'; the second te rm contains  a 
p r oduc t  o f n  - -  2 Kronecke r  deltas and  will be zero i f  more  than  two ai :/- ~i', 
etc. Hence for  the d iagonal  elements,  the asympto t ic  behavior  is" 

i=I  

j= l  i=1 BIB;" 
i r  

~( t )  (42) 

F o r  the off-diagonal  elements,  assume that  m of  the ~ i ,  say ~1 ,..., ~ ,  have 
c~ =/= c~/, while ~i z ~ '  for  the remaining  n - -  m spins; then, the asymptot ic  
behav ior  is 

<CX 1 O~ n [ * .. �9 . ~ ~,<,~)(t)l ~1' ' ~ >  

i= r  BI""Ben ]=1 
Bl',..Bm" 

~.~ ~ ( t )  (43) 

2 There are pathological cases where the a*~) (0) are chosen so that all the sums in Eqs. 
(42) or (43) are zero and the relaxation is of higher order. 
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The behavior o f  the Ursell function is obtained in the same manner from 
Eqs. (25) and (37), 

<0~i a n  ] * i , . , " ' "  u ( ~ ) ( t ) l  ~ . .  o~ > 

B i ' " 2  n i=1 
Bi'...Bn" 

i=1 BI '"B~ i=1 
BI'., .Bn" 

]=1 i=1 BjB/ 
i r  

x Z ~ a~,~ ,<p~ ... V~ I G) (o ) l  ~ '  ... p='> 
~-..~,_**+1..-~ ~s*, 

t31"" "~d_i/3)+l'' "fin' 

2 1 ' ' '  --~ ~ ~ ~oLiezi'~iSi'(t)<~l "'" fin I ~ / ~ ) ( 0 ) [  3 1 '  " '" tint} ( 4 4 )  
BI"'B n i=i 

Bl,.-./3 n, 

But by the sum rule given in Eq. (17), all the sums except the last are zero, 
hence 

<o~ 1 " "  o~ n [H(~n)(/)[  O~ i '  . . .  O~n' ) 

BI'"~ n i=l 
BI'. �9 .Bn" 

(45) 

so that 

(46) 

In summary we find the asymptotic behavior of  this model  to be as follows: 

�9 .. ~(.)(t)[ % .. e~.>-~ c r ~  as ~(t) (47) 
i=1 

�9 - ' * ' . . . % ' > - + 0  a s  q ~ ( t )  ( 4 8 )  
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where m is the number of spins i for which ai :/: ai', 1 ~ m ~< n; 

( c q  - ~ l  * ' ' .  ' " , u(~)(t)i cq " o ~ ) - - +  0 as r (49) 

for both diagonal and off-diagonal elements. 
The off-diagonal elements of the spin density matrix decay faster than the 

diagonal elements and decay increasingly rapidly the further off-diagonal the 
element is. The Ursell functions decay faster than the spin density matrix, 
except for the furthest off-diagonal elements, for which the rates are the same. 

The diagonal and first off-diagonal elements (m = 1) both decay 
asymptotically as r but since different matrix elements of r are 
involved, the actual rates may be different. 

4.  E X A H P L E  

We consider here a simple system of noninteracting spin-l/2 particles 
which illustrates all the features of the general case discussed in the last 
section. We assume that the interaction between a single spin and the bath 
has the form 

H' = F~S~ + F+S+ + F_S_ (50) 

where the Sq are spin operators and the Fq are lattice operators, with 

F• = �89 T iF~) (51) 

The elements of the one-spin relaxation matrix R'c~l=l,/31/3z, can be cal- 
culated explicitly in terms of the Fq as (4) 

ill' 
O~ 1 Oi 1 

1 1 
2 2 

1 1 

! 1 

1.1 1 

R1 

! 1 i i 
2 2 2 2 

! 1 --! ! 
2 --2 2 2 

In Eq. (52), 

--2a 2/m 0 0 

2a --2/m 0 0 

0 0 --b -- (1 + / x ) a  0 

0 0 0 --b -- (1 + t0a 

(52) 

/~ = e -~/7~r (53) 
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where ~o is the Larmor frequency for the spins, 

oz 
a = i d t  e - i ~ ( F + F _ ( t ) ) L  (54) 

, 2  --eo 

b = f d t  (F~F~( t ) ) r  (55) 
Lt 

In Eqs. (54) and (55), the lattice correlations are considered real and even 
functions of time; ( ' " } z  denotes an average over the lattice variables. The 
quantities a and b are real and nonnegative. 

The four eigenvalues of R~ are 

A 0 : 0, A1 : --2(1 +/x)a,  A~ = h~ = --b--(1 +/~)a (56) 

The eigenvalues are all real and nonpositive. The order is arbitrary since there 
is no a p r i o r i  way to decide whether A 1 or A z is the larger. However, for a 
model of isotropic, exponential relaxation of the lattice operators, with 
correlation time % 

=. 1~ ~ w2T 2) b (F2)~ a ~ F  ) r / (1 + = 

so that b ~ 2a and hence F A2 [ ~ ] A1/. 
A complete set of eigenmatrices for R1 is 

A o =  [1/(1 + , ) ] ( ~  ~) B o :  ( ;  01) 

(57) 

(58) 

We may now use Eq. (38) to obtain the elements of r 

~z/z.1/2.1/2.1/2(t) = [1/(1 + /z) ]  e al~ 

(~1/2,1/2,-1/2,-1/2(t) = [--/~/(1 + /~)] e alt 

r = - - [1 / (1  + /z)] e alt 

r  = [pb/(1 ~- ~) ]  e alt 

r = e ~ 

(~-l/2.1/2.-z/~a/2(t) = e ~ t  = e a~t 

(59) 
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For our purposes, the basic result is that 

~e alt if OL 1 O~ 1 ' (60) 
q~z~z '~ l~ l ' ( t )  ~ ~e A~t if ~1 @ az' 

if/~1 and/31' are such that r does not vanish. 
The asymptotic behavior of the diagonal elements of the spin density 

matrix is given by Eq. (42). Only elements r for which ai = ai' 
appear, and hence 

I~ e al~ (61) 

The off-diagonal elements of a~*~)(t) have asymptotic behavior given by 
Eq. (43). The elements r  which appear here all have a~ v~ a~', and 
hence 

(a  I " "  a n [ q~)(t)[ C~' "'" a~') ~ e "a~t (62) 

where m is the number of spins i for which cq v~ ai', 1 ~< m ~< n. 
The time behavior of the Ursell functions is given by Eq. (45) for both 

diagonal and off-diagonal elements. We find that 

( a  1 " '" a n ] Utn) ( t ) ]  a I' "'" an '  ) ~ e'~a2te ("-'~)a'` (63) 

where m is the number of spins i for which a~ v~ a / ,  0 ~< m ~< n. 
The Ursell functions decay faster than the spin density matrix except for 

the furthest off-diagonal element (m = n), where both decay as e "a'.t. 
The diagonal and first off-diagonal (m = 1) elements of the density 

matrix decay as e a~t and e a~t, respectively. For a model of isotropic, exponen- 
tial decay of the lattice operators, I )t~ I >~ I Zz 1, and hence all the off-diagonal 
elements decay faster than the diagonal elements. 

5. C O N C L U D I N G  REMARKS 

In the quantum mechanical model of spin relaxation considered here, 
one must be concerned with both diagonal and off-diagonal elements of the 
system density matrix. We have shown that, in general, the off-diagonal 
elements of the reduced spin density matrix approach equilibrium much 
faster than the diagonal elements. We have also shown that the initial corre- 
lations, as measured by Ursell functions, go to zero more rapidly with time 
than the reduced spin density matrix approaches its equilibrium value. For the 
diagonal elements, our results agree exactly with those found by Oppenheim 
e t  al. m for the classical probability master equation model. The essential 
modification in the quantum mechanical case arises in consideration of the off- 
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diagonal elements of  the density matrix, which decay to their zero equilibrium 
value at a variable asymptotic rate depending on the location relative to the 
diagonal. At the extreme, the off-diagonal element will decay as rapidly as the 
initial correlation. These results may be expected to hold for all systems 
where the particles relax independently, and where the relaxation is ade- 
quately described by a quantum mechanical master equation. 

It  would be interesting to extend our considerations to quantum me- 
chanical systems where there are intermolecular interactions between spins 
as well as interaction with a lattice2 Traditionally, the case of  intermolecular 
relaxation of spins in fluid systems had been handled on the basis of  a two- 
spin density matrix. 16) The reduction of the N-spin Redfield equation (2) to a 
two-spin Redfleld equation when intermolecular interactions are present has 
not been rigorously accomplished, to our knowledge. The treatment of  such 
a case would require an analysis of the decay of initial correlations similar 
to that undertaken here. Our results suggest that difficulties may arise in 
treating the furthest off-diagonal elements of  the two-spin reduced density 
matrix. 

One may raise the question about the practical possibility of measuring 
the decay of correlations in actual N M R  experiments. In general, we do not 
believe that this is possible, because, to an excellent degree of approximation, 
the initial nonequilibrium states established in experiments are not  correlated. 
For  example, the famous 90 ~ pulse instantaneously rotates the equilibrium 
z component  of  the magnetization into the x, y phase. Thus the initial non- 
equilibrium density matrix is 

N N 

or(O) exp(f lyHoM~) = I~ exp(fiwoS(~ i)) = I~ ~ri(O) (64) 
/ = 1  i - - 1  

which is of  the form of an uncorrelated initial condition. 
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